

About the author

Matthias Kowalewski, the author of this document, is, despite popular
belief, not a real horse. He loves regex as much as being random.

) If he is not actively hosting regex challenges in the Splunk> community

he works as a Splunk> Consultant with focus on IT-Security. He also

H;! enjoys playing strategy games on his computer or hacking into

vulnerable machines that were set up in his private security lab.

Find Matthias on LinkedIn: www.linkedin.com/in/matthiaskowalewski

Licensing

This document was published using the creative commons license BY-NC-SA 4.0

DOOEG

BY NC SA

Learn more about creative commons here:
https://creativecommons.org/

Learn more about BY-NC-SA 4.0:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

In the words of the author

Use this guide to challenge your friends or colleagues. Share it with everyone.

Be aware that it is prohibited to use the presented material in any commercial way. You are not
allowed to make money with the content of this document. Do not use the content of this
document elsewhere without appropriately crediting the author and origin.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

http://www.linkedin.com/in/matthiaskowalewski
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Glossary

Licensing
Glossary

Introduction
About this document
How to use this document?
What regex flavor should | use?
What regex editor should | use?

Where can | learn more about regular expressions?

About the challenges
How difficult are the challenges?

Did horsefez come up with all the challenges by himself?

Feedback

Introduction to the Challenges
Structure of challenges
Additional info

The Challenges
The famous writer
The end of your sentence
The 29th of February
Numbers
Asterisk the Gaul
Markups, Markdowns, Markarounds
Roman Numerals
Vali-Dates
Credit Card Numbers
The Picky Painter
Revelation

Acknowledgements
About the author

Contact me for feedback!

Jump to Glossary

—

O O o DDA DMNWWWWWW DN

Licensed using creative commons BY-NC-SA 4.0

Introduction

About this document

This document serves as a collection of regular expression (regex) challenges held by horsefez
during the ‘Regex Tuesday’ events in the Splunk> community user group on slack. This
document includes ten challenges, plus one bonus challenge that has never been revealed
before.

How to use this document?

This document should encourage you to overcome your struggles with regex by challenging you
in fun and creative ways. Challenge yourself, your friends or coworkers to a regex-off and find
out who the real regex master is.

What regex flavor should I use?

You can use any regular expression flavor you like or feel comfortable with. Just note that the
challenges were originally run using PCRE (PHP<7.3). Scores were calculated with the PCRE
engine implemented on regex101.com.

What regex editor should I use?

There are multiple regular expression editors and engines on the web. The author prefers to use
regex101.com as it is easy to use and comes with a debugger option, quick-reference,
explanations and a mode to use substitution. It additionally allows you to save, fork and share
your solutions with friends and colleagues.

Where can I learn more about regular expressions?

Like with regex editors there are also multiple learning options when it comes to regular
expressions. Sites like rexegg.com and regular-expressions.info are good starting points. These
are the sites where the author learned and improved his skills. There is also a fun site called
regexcrossword.com where you are able to fill out crossword-puzzles using text that has to
match regular expression statements.

There are also so called ‘regex-golf’ sites, but the author discourages you from trying them out
as a beginner, as a lot of those so called ‘challenges’ require you to use brute-force to get to the
solution.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://regex101.com/
https://regex101.com/
https://www.rexegg.com/
https://www.regular-expressions.info/
https://regexcrossword.com/

About the challenges

The challenges were all already tested in the field. Meaning that countless people have tried
them already and came up with solutions - therefore are doable. They might look difficult or
impossible to some of you at first glance, but you can trust the author that they are indeed
possible.

How difficult are the challenges?

The author tried to sort the challenges in a way so it starts fairly easy and then ramps up the
difficulty in the later ones. This document uses a horse-based difficulty ranking system (HbDRS)
which shows the difficulty using horse figures. Example of HbDRS in action:

Difficulty Rating “Easy” = ‘J

Difficulty Rating “Medium” = ‘, L
Difficulty Rating “Hard” = ‘, ‘, ‘)
Difficulty Rating “Insane” = ‘, L L ‘J L

Did horsefez come up with all the challenges by himself?

No, not at all. Many of the challenges present in this collection were found on the web. Big
thanks go out to Callum Macrae who not only gave me the idea for the ‘Regex Tuesday’ events
but also provided a lot of the challenges. Fun fact, they aren't his either as he also just found
them on the web and collected them on his website here callumacrae.github.io/regex-tuesday/.

The challenges on Callum Macrae’s site were designed to be done by using the JavaScript
implementation of regex. The author went ahead and made them PCRE compatible, added
additional descriptions, wrote an extended ruleset and adjusted the challenge data.

Feedback

| would love to hear your feedback on all things regex.
Check out the Contact me for feedback! section for information on how to reach me.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

http://callumacrae.github.io/regex-tuesday/

Introduction to the Challenges

Structure of challenges

Title
The title of the challenge.

Difficulty (HbDRS)
Difficulty assumption done by the author.

Preamble
An optional short introduction story.

Description
A description on what to actually achieve in the challenge.

Rules
The ruleset for the current challenge. Mostly the same on all challenges.

Winning Categories

The categories that were judged in the original installment of the challenge.

Mostly ‘fewest steps’ and ‘fewest chars’. Be aware that most of the time there is one solution
that has an optimal step count, but not an optimal char count and vice versa. Solutions that
have good scores in both categories are rare.

Score-Self-Check

Shows score ranges, so you can better evaluate your own solutions.

Hints
Optional hints the author might have.

Challenge Data
The data you need to match. Put it into the ‘test string’ section on regex101.

Expected Output
What the end results should look like.

Helpful Links
Links to techniques that may help you in the challenge.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Additional info

Default Rules

Do not try skipping over unwanted words/lines by using tricks like this or similar:
(?<match1>\w{15})\s*\d{7}\n(?<match2>\w{36})
Instead write logic that works with the content of every line independently.

Do not use anchors like \A, \Z, \z or \G when writing your regular expression.
Instead use anchors like \b, \B, * or S.

Do not make your regex fail on purpose when it encounters the part of data that should
not match using trickery with regex control-verbs.

Instead write a regex that evaluates every line of the data individually. Regex
control-verbs are allowed to be used. But don't try to get them to work as a beginner.

Do not use flags ‘A’ and 'J".
Use flags ‘g’ (global) and ‘m’ (multiline) as default. Other flags are also allowed.

Debugger

On regex101.com there is a neat debugger built into the site. You can find it on the left side of
the screen and should use it to optimize your step count after you've come up with a working
solution or when you need to understand how the regex engine actually works.

Yes, | encourage you to make use of this feature extensively.

Stuck somewhere?
Oftentimes it is useful to start from scratch. If you struggle to solve a problem in life it is often
good to look at it from another angle. Regex is no different. Save what you have and start anew.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://regex101.com/

Substitution function

Some of the upcoming challenges require you to use the built-in substitution function of
regex101.com. It might frighten you a bit at first, but let me assure you that it is rather easy to

use.

You can find the substitution function here. Just click on it and it shows up.

FUNCTION

>. Match

Substitution v

x

List

- g

Unit Tests

TOOLS

SUBSTITUTION

insert your replacement value here

Let us make a short example to show you how it works and what it actually does.

SAVE & SHARE ~ REGULAR EXPRESSION
M Save Regex ctrl+s (IAIZ.aIZI*) (\w#) - (o)
ELAVOR TEST STRING

<f

7

PCRE2 (PHP >=7.3) v
Dustin-hates-regex

<> PCRE (PHP <7.3) -Od‘i <13 keso-
</> ECMAScript (JavaScri... Sophie-demonizes: regex
<> Python 2.7 --avoids--
/> Golang Russell-rejects-regex
<> Java 8

FUNCTION SUBSTITUTION
> Match $1+loves-$3!
¥ Substitution v
= (s Dustin-loves-regex!

. Chris-loves-regex!

¥ Unit Tests -

Sophiesloves«regex!
Steven« loves-regex!

Russell:loves:regex!

With the power of regex, we changed their opinion about regular expressions. Neat.

You can find another good example and explanation over here:
https://sodocumentation.net/regex/topic/9852/substitutions-with-regular-expressions

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://regex101.com/
https://sodocumentation.net/regex/topic/9852/substitutions-with-regular-expressions

The Challenges

The famous writer

HbDRS ‘)

Preamble
In a land far far away...

A famous novel writer once told me the biggest challenge he was facing whenever he had
finished a new book was correcting mistakes he made while writing it.

One of the problems was that whenever he drank alcoholic beverages before the writing session
he would occasionally repeat words twice ‘twice'.

It previously was very difficult for him to iron out those mistakes whenever he did some
proofreading afterwards. Luckily for him, he employed you to solve his problems.

Description

Find the words that are occuring twice twice right after another. Remember that those words
could also be case CASE sensitive.

It can happen that some words contain other words in them and therefore will also match if the
regex is written poorly. Only words that are coming right after each other should be matched.

To help the novel author to better find the words he should delete we are going to encase the
second word in html tags, formatting it to bold text using bold text.

You need to use the built-in ‘substitution’ function of regex101.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com

Fewest chars.

Count of characters of the regex + Count of characters of the substitution

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Score-Self-Check
Fewest steps:

Good ~ 1000 steps; Great ~ 600 steps; Amazing ~ 450 steps

Fewest chars:

Good ~ 50 chars; Great ~ 40 chars; Amazing ~ 30 chars

Hints

(\b) Word boundaries.
(\1) Backreference.
(?i) Flags.

Challenge Data

This is a text

This is is a text

This text text is is

This text is a text

This test text is a test
This this text is a text
cat dog dog cat dog
This test is a test tester
hello world hello world
This nottest test is something
This is IS a test

<Westy> I'll I'll be be back back soon soon.

Helpful Links

Expected Output (10 matches)

This is a text

This is is a text

This text text is is
This text is a text

This test text is a test

This this text is a text

cat dog dog cat dog

This test is a test tester

hello world hello world

This nottest test is something
This is IS a test

<Westy> I'll I'll be be back
back soon soon.

https://www.regular-expressions.info/wordboundaries.html

https://www.regular-expressions.info/backref.html

https://www.regular-expressions.info/modifiers.html

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/wordboundaries.html
https://www.regular-expressions.info/backref.html
https://www.regular-expressions.info/modifiers.html

10

The end of your sentence

HbDRS L

Preamble

After you have successfully helped out our novel writer from the first challenge he contacts you
a while later with a new request. He wants you to match sentences in pairs of two out of his
latest script. The reason behind this request is unknown, but he pays you good money so you
won't ask further questions.

Description
You need to separate sentences at the natural sentence-break-points (made up word) by
splitting them into two separate matches using named capture groups:

e first_sentence
e second_sentence

example: Joseph Hornsby works for Splunk. | am his biggest fan and
regex: (?<first_sentence>some regex logic) (?<second_sentence>some other logic)
first_sentence: Joseph Hornsby works for Splunk.

second_sentence: [am his biggest fan and

Do not capture the space between the sentences. In most cases it is just one whitespace.
Do use named capture groups to capture both sentences individually.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Score-Self-Check
Fewest steps:

11

Good ~ 1000 steps; Great ~ 300 steps; Amazing ~ 105 steps

Fewest chars:

Good ~ 90 chars; Great ~ 75 chars; Amazing ~ 65 chars

Hints

([...]or[*.]) Character classes.

Challenge Data

assumes word senses. Within the confines of the book

does the clustering. In the event of a cluster-failure
would finish it, but when? It was hard to tell

soon afterwards ‘The Tick’ arrived." After she had told him

what a mess! Ryan Adler did not accept it and
it wasn't hers!" She replied to the police officer
always thought so.) Then he went to the airport

| didn't think about this. Meanwhile, the penguins attacked

in the U.S.A., people often assume degus to be squirrels

Kail?", he often thought, but Greg denied it
the goose weighed 13.5 kilograms, which was a lot
well... they'd better not install that software

J.H. has long been a very talented Operations Analyst at Splunk
like that", James M. thought, but was pleasantly surprised when

but W. G. Grace never had much hope in Thomas Turner

Expected Output (8 matches)

The first eight (8) sentences from the top downwards should match using your regex logic. The

rest of the sentences should not match using your logic.

TEST STRING

assumesswordssenses.Within«thes:confines:ofsthe:book
+Instheseventsofsascluster-failure
woulds finisheit,«butswhen?+Itswas+hard:tostell

saon:afterwards. ‘The-Tick’-arrived. " After -she- had: told:hin

whateasmess!:RyansAdlersdid«notsaccept:it-and

_-She- repliedstosthespolicesofficer

always+thoughteso.)«Thenshe:wentstosthesairport

Iedidn' tethinkabout: this. -« :Meanwhile, sthe:penguins+attacked

in-the-U.S.A., -people-often-assume-degus-to-be-squirrels
. : X

T T T JAPAE DUor e e

Helpful Links

https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/named.html

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/named.html

12

The 29th of February

HbDRS L

Preamble

Let's just assume that the novel author is an immortal being and wants to publish his books only
on the 29th of February of every leap-year. He asks you to match only the 29th of February’s that
are valid in a list of dates he provides, so that he knows when he has to publish new literature.
Also match dates that are already in the past.

And so ends the tale of the famous writer who was able to solve all his issues with the power of
regex and he then lived happily ever after. Or does he? We'll see.

Description

It is kind of obvious that regular expression is not able to model a complex logic such as
validating which 29th of February is legit or not. But it is certainly possible to match only the
correct dates using a brute-force approach.

Check the ‘Expected Output’ section for further clarification.

Rules
Do not use anchors like \A, \Z, \z or \G. Do not use flags ‘A’ and ‘J’". Everything else is allowed.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Score-Self-Check

Fewest steps:

Good ~ 2000 steps; Great ~ 1300 steps; Amazing ~ 700 steps
Fewest chars:

Good ~ 50 chars; Great ~ 43 chars; Amazing ~ 35 chars

Hints
Character classes. Negated Character classes. Repetition.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Challenge Data

29th of February 1998
29th of February 1999
29th of February 2000
29th of February 2001
29th of February 2002
29th of February 2003
29th of February 2004
29th of February 2005
29th of February 2006
29th of February 2007
29th of February 2008
29th of February 2009
29th of February 2010
29th of February 2011
29th of February 2012
29th of February 2013
29th of February 2014
29th of February 2015
29th of February 2016
29th of February 2017
29th of February 2018
29th of February 2019
29th of February 2020
29th of February 2021
29th of February 2022
29th of February 2023
29th of February 2024
29th of February 2025
29th of February 2026
29th of February 2027
29th of February 2028
29th of February 2029
29th of February 2030
29th of February 2031
29th of February 2032
29th of February 2033

Jump to Glossary

29th of February 2034
29th of February 2035
29th of February 2036
29th of February 2037
29th of February 2038
29th of February 2039
29th of February 2040
29th of February 2041
29th of February 2042
29th of February 2043
29th of February 2044
29th of February 2045
29th of February 2046
29th of February 2047
29th of February 2048
29th of February 2049
29th of February 2050
29th of February 2051
29th of February 2052
29th of February 2053
29th of February 2054
29th of February 2055
29th of February 2056
29th of February 2057
29th of February 2058
29th of February 2059
29th of February 2060
29th of February 2061
29th of February 2062
29th of February 2063
29th of February 2064
29th of February 2065
29th of February 2066
29th of February 2067
29th of February 2068
29th of February 2069

29th of February 2070
29th of February 2071
29th of February 2072
29th of February 2073
29th of February 2074
29th of February 2075
29th of February 2076
29th of February 2077
29th of February 2078
29th of February 2079
29th of February 2080
29th of February 2081
29th of February 2082
29th of February 2083
29th of February 2084
29th of February 2085
29th of February 2086
29th of February 2087
29th of February 2088
29th of February 2089
29th of February 2090
29th of February 2091
29th of February 2092
29th of February 2093
29th of February 2094
29th of February 2095
29th of February 2096
29th of February 2097
29th of February 2098
29th of February 2099
29th of February 2100
29th of February 3066
29th of February 4040
29th of February 7072
29th of February 8022
29th of February 9996

13

Licensed using creative commons BY-NC-SA 4.0

14

Expected Output (28 matches)
There are 28 valid dates. 28 lines should match your logic. The rest of the lines should not
match your logic.

It is a brute-force approach. It might get ugly, but it doesn’t have to. If you get stuck anywhere
remember that starting from scratch can oftentimes help.

Helpful Links
https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/charclasssubtract.html
https://www.regular-expressions.info/repeat.html
https://www.timeanddate.com/date/leapyear.html

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/charclasssubtract.html
https://www.regular-expressions.info/repeat.html
https://www.timeanddate.com/date/leapyear.html

15

Numbers

HbDRS L b

Preamble
This challenge marks the start of the ‘medium’ difficulty challenges. By now you should have a
basic understanding of regular expressions.

Description
In this challenge you need to validate certain number formats. Write an expression that would
also work with different numbers in the same formats. Do not brute-force.

Your matching numbers need to be captured in a named capturing group called “match”.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Score-Self-Check

Fewest steps:

Good ~ 1500 steps; Great ~ 1100 steps; Amazing ~ 900 steps
Fewest chars:

Good ~ 100 chars; Great ~ 75 chars; Amazing ~ 60 chars

Hints
Possessive Quantifiers. Optional Items. Alternation.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

16

Challenge Data (match, no match)

47 .7
10,000,000,45
10 000 000.45
123,456,789,
10 102.3523
10,214 241

124

1,024
2,000,204
3,000.6
8,205,500.4672
0.5
36,000.57
100,000

5

42

10,5

10.5
10.44444444
1024

9999 352
10,19836

30 000,7302
0,5

47 372
10,000,000.45
10 000 000,45
123,456,789
123 456 789
1,05335
1.53252

)

1025
1,1337,000
,046

100.

222

10,

10,.5

34 34

3692 38

36 047.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

17

Expected Output (25 matches)

The first 25 lines should match your regex logic. All the other lines should not match.
Match each valid line using a named capture group called ‘match’.

(?<match>your regex logic)

Helpful Links

https://www.regular-expressions.info/possessive.html
https://www.regular-expressions.info/optional.html
https://www.regular-expressions.info/alternation.html

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/possessive.html
https://www.regular-expressions.info/optional.html
https://www.regular-expressions.info/alternation.html

18

Asterisk the Gaul

HbDRS L b

Preamble

Looks like the famous writer friend needs our help once again. This time around he wants you to
reformat sections from his new comic book that he previously formatted using markdown style.
Being the nice person you are, you aren't going to deny his request.

Description

To help the writer correct his formatting mistakes we are going to reformat words or strings of
words that have one asterisk *’ on one side that corresponds to one asterisk *' on the other
side. Use the html tags <i>italic</i> to mark those text sections correctly as italic text.

Be aware that there are also sections with two asterisks **, which should not be messed with.
Additionally there are single asterisks who have no corresponding partner-asterisk that also
should not be matched by your logic.

Observe the below example carefully to understand the rules.

example:

Example with one * lonely asterisk, one *italic section* and one **section that is bold**
expected result:

Example with one * lonely asterisk, one <i>italic section</i> and one **section that is bold**

You need to use the built-in ‘substitution’ function of regex101.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com

Fewest chars.

Count of characters of the regex + Count of characters of the substitution

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Score-Self-Check
Fewest steps:

19

Good ~ 900 steps; Great ~ 500 steps; Amazing ~ 220 steps

Fewest chars:

Good ~ 90 chars; Great ~ 60 chars; Amazing ~ 45 chars

Hints
Lookahead and Lookbehind.

Challenge Data

This text is not italic.

This text is italic.

This text is *partially* italic

This text has *two* *italic* bits
bold text (not italic)

**bold text with *italic* **
part bold, *part italic*

*jtalic text **with bold** *
jtalic **bold** *italic* **bold**
*invalid markdown (do not parse)**
random * asterisk

Helpful Links

Expected Output (9 matches)

This text is not italic.

<i>This text is italic.</i>

This text is <i>partially</i> italic

This text has <i>two</i> <i>italic</i> bits
bold text (not italic)

**bold text with <i>italic</i> **

part bold, <i>part italic</i>

<i>italic text **with bold** </i>
<i>italic</i> **bold** <i>italic</i> **bold**
*invalid markdown (do not parse)**
random * asterisk

https://www.regular-expressions.info/lookaround.html

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/lookaround.html

20

Markups, Markdowns, Markarounds

HbDRS L b

Preamble

In the previous challenge we reformatted text that was in markdown-format into html-style. This
time around we are going to validate markdown statements. Huge thanks go out to Damien
Chillet (@d3.iso) who originally helped me out on making this challenge possible.

Description
| am going to cut the description short and actually move all the explanations to the ‘Expected
Output’ section.

You need to use the built-in ‘substitution’ function of regex101.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com

Fewest chars.

Count of characters of the regex + Count of characters of the substitution

Score-Self-Check

Fewest steps:

Good ~ 1500 steps; Great ~ 500 steps; Amazing ~ 300 steps
Fewest chars:

Good ~ 120 chars; Great ~ 85 chars; Amazing ~ 68 chars

Hints
Lookahead and Lookbehind. Character classes. Negated Character classes.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

21

Challenge Data (match, no match)

[Basic link](http://example.com)
[Another](http://example.com/)

Link: macr.ae
[Text](https://test.this-test.com/)
[Test!](https://this.com) hello

| [l](https://TESTdomain.com) |
[number](http://Otest.com/)
[Invalid](http\\Otest.com/)
[Invalid](invalid://example.com)
[Invalid](mailto:nobody@example.com)
[Invalid](javascript:alert())
[Invalid](http://test_ing.com)
[Invalid](http://inval.id,com)
I[iImage](http://example.com/cats.jpg)
I[Other image](cats.jpg)
I[radioactive](http://dolphin.com)

[Invalid MarkDown](http://example.com)I
[[cat-penguin](http://example.com)
[[Invalid MarkDown](http://example.com))

Additional Explanations

Expected Output

Basic link
Another
Link: macr.ae
Text
Test! hello

| l |
number
[Invalid](http\\Otest.com/)
[Invalid](invalid://example.com)
[Invalid](mailto:nobody@example.com)
[Invalid](javascript:alert())
[Invalid](http://test_ing.com)
[Invalid](http://inval.id,com)
I[Image](http://example.com/cats.jpg)
I[Other image](cats.jpg)
I[radioactive](http://dolphin.com)

[Invalid MarkDown](http://example.com)I
[[cat-penguin](http://example.com)

[[Invalid MarkDown](http://example.com))

Do not make your regex fail when encountering the word ‘invalid’.

Why should the bottom lines not be matched?

[Invalid](http\\Otest.com/)

— because it isn't well-known URL syntax (\\)

[Invalid](invalid://example.com)

— because it isn't well-known URL syntax (invalid:)

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

22

[Invalid](mailto:nobody@example.com)
— because it isn't well-known URL syntax (mailto)

[Invalid](javascript:alert())
— because it isn't well-known URL syntax (javascript:alert())

[Invalid](http://test_ing.com)
— because it isn't well-known URL syntax (underscore)

[Invalid](http://inval.id,com)
— because it isn't well-known URL syntax (, instead of .)

I[iImage](http://example.com/cats.jpg)
— because the ‘I" makes it an image-reference, therefore it shouldn't be converted into a
hyperlink

I[Other image](cats.jpg)
— because the " makes it an image-reference, therefore it shouldn't be converted into a
hyperlink

I[radioactive](http://dolphin.com)
— because there is the letter ‘I’ without a space afterwards, which causes an invalid syntax

[Invalid MarkDown](http://example.com)I
— because there is the letter ‘I without a space before it, which causes an invalid syntax

[[cat-penguin](http://example.com)
— because there is a second

[[Invalid MarkDown](http://example.com))
— because the parentheses mismatch ‘[...)’, additionally this causes a syntax error

Helpful Links

https://www.regular-expressions.info/lookaround.html
https://www.regular-expressions.info/charclass.html
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/lookaround.html
https://www.regular-expressions.info/charclass.html
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

23

Roman Numerals

HbDRS L b

Preamble

This challenge marks the end of the ‘medium’ difficulty challenges. What better way to celebrate
this than to make one that has absolutely no real-world application. Let's make a challenge
about matching roman numerals, which is a superior numbering system used by Romans and
Horses.

Description
In this challenge you need to come up with regex logic for matching roman numerals. Luckily,
the logic behind roman numerals is known to mankind and well documented.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Score-Self-Check

Fewest steps:

Good ~ 10000 steps; Great ~ 5500 steps; Amazing ~ 3700 steps
Fewest chars:

Good ~ 200 chars; Great ~ 100 chars; Amazing ~ 70 chars

Hints
Possessive Quantifiers. Optional Items. Alternation.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

24

Challenge Data (match, no match)

FIEHEIV V VIEVIEVIEIX

X XXV XV XV XIX

XXV XXVI XXVII XXVII XXIX

XXX XXX XXXV XXXIX

XL XLIIF XLV XLVIHI XLIX

L LELH LHELIV LV LVILVIE LV LIX

LX LXVI LXIX LXXIX LXXXV LXXXVIII

XC XCV XCVI XCVII XCIX

CCICVCIX

CXI CXX CXXX CXXXVIII CXXXIX CXLII CL CLV CLVIII CLX CLXX CLXXX CXC CXCIIl CXCVII
CXCIX CC CClII CCVIII CCIX CCXXV CCL CCLXXV CCCLXXV CD CDXXV CDL CDLXXV CDXC
D DIX DCLXVI DCLXXV DCCCXXVIII

CM CMLXXV

M ML MCV MCCCL MD MDCCXXV MDCCCLXXV MCML MCMXCVIII MCMXCIX
MM MMCCCXXV MMCDLXXV MMDL

MMM MMMCCXXVIIl MMMCCCXXVIIl MMMD

MMMCMXCV MMMCMXCVIIl MMMCMXCIX

VV VVX XVV T IVIVIV XHX XXXXI VC XV IC CXIIL

LVIXXX LIXXX XXXVIH XXXVV MCVV MLTK IV [IX TIL 1IM 1IC CCM

CMD CMDB LOL LOL GG RAF WTF XIIIXCVIIVMC MMIXIII CCCXXXIIX

MCMM MDCCLXXVIIII CCCD CCCXXXIII MMMMXXXX

Expected Output (111 matches)
Using the logic you came up with you need to match every single numeral marked in green.
While simultaneously not matching the red ones.

Helpful Links

https://www.regular-expressions.info/possessive.html
https://www.regular-expressions.info/optional.html
https://www.regular-expressions.info/alternation.html
https://www.factmonster.com/math-science/mathematics/roman-numerals

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/possessive.html
https://www.regular-expressions.info/optional.html
https://www.regular-expressions.info/alternation.html
https://www.factmonster.com/math-science/mathematics/roman-numerals

25

Vali-Dates

HbDRS L b ‘,

Preamble

Now we finally arrive at the hard challenges. Congratulations to you if you have come this far.
Remember matching the correct dates for the 29th of February a couple of challenges back?
This time | want you to validate dates that follow a certain scheme.

Description
The challenge data includes a list of dates with different formats.

| want you to match dates with the following two formats:
yyyy/mm/dd HH:MM
yyyy/mm/dd HH:MM:SS

All the other formats and especially invalid dates should not be matched.

Do not validate if a month has 28 or 29 days (leap years) or 30 or 31 days.
Do however validate if there are obvious errors like 27:44:13 or 2021/17/25.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Score-Self-Check

Fewest steps:

Good ~ 1200 steps; Great ~ 700 steps; Amazing ~ 400 steps
Fewest chars:

Good ~ 140 chars; Great ~ 100 chars; Amazing ~ 85 chars

Hints
Alternation. Character classes.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

26

Challenge Data (match, no match)

2012/09/18 12:10
2001/09/30 23:59:11
1995/12/01 12:12:12
1001/01/07 14:27
2021/10/2010:10
2000/01/01 01:01:01
2007/07/22 22:34:59
2021/05/05 00:00:00
2021/9/18 23:40
2013/XY/09 09:09
2021/00/01 01:49:59
2012/13/2522:17:00
1994/11/00 12:12
2012/12/412:12
2009/11/11 24:00:00
2021/06/24 13:60
2002/10/10 14:59:60
a2021/11/11 11:11:11
2005/05/05 05:05:05d
200001 01 01:01:01
2007-07-22 22:34:59
2020/05/05 00/00/00

Expected Output (8 matches)

The first 8 lines should match your logic, while the rest of the lines should not be matched.

Helpful Links

https://www.regular-expressions.info/alternation.html
https://www.regular-expressions.info/charclass.html

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/alternation.html
https://www.regular-expressions.info/charclass.html

27

Credit Card Numbers

HbDRS L b ‘,

Preamble

As quickly as we arrived at the hard challenges we are going to leave them behind soon, so we
can head towards the insane ones. This challenge serves as some sort of gate-keeper. If you are
able to master this one you are ready for the insanity that comes next.

Description
| want you to match credit card numbers (CCN) following these six simple rules.

Rule #1: The CCN must start with a 4, 5 or 6.

Rule #2: The CCN must only contain numbers 0 to 9 and optionally hyphens.

Rule #3: The CCN must contain exactly 16 digits... no less, no more.

Rule #4: The CCN may come in groups of 4 (four) digits separated by a hyphen. There must be
either three hyphens in total or none at all. Nothing in between.

Rule #5: The CCN must not use any other separator that is different from a hyphen.

Rule #6: The CCN must not have 4 (four) or more consecutive repeated digits.

While rules #1 to #5 shouldn’t pose much of a challenge to you, rule #6 is more difficult to be
implemented correctly.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Score-Self-Check

Fewest steps:

Good ~ 5000 steps; Great ~ 3500 steps; Amazing ~ 1100 steps
Fewest chars:

Good ~ 130 chars; Great ~ 90 chars; Amazing ~ 60 chars

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Hints

28

Alternation. Character classes. Back References. Optional Items.

Challenge Data (match, no match)

4123456789123456
5123-4567-8912-3456
6000700080009000
6653625879615786
A424424424442444
6543-6543-6543-6543
2223334445556660
61234-567-8912-3456
5133-3367-8912-3456
5123-3567-8912 - 3456
4512-1234 - 1244 -3256
5553-323519230091
55533235-19230091
555332351923-0091
abcd-eFgh-Hjkl-mnop
42536258796157867
4424444424442444
5122-2368-7954 - 3214
44244x4424442444
0525362587961578
4332-2223-5532-2010
5522,5522,5522,5522
5522_5522-5522,5522
6543-6543 6543-6543
5533 5555 5522 2255
5553-5553-5553-5555
8231-9200-2724-2219
6333-3444-2221-1133
5554-4433-3222-1110

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

29

Expected Output (6 matches)
The first 6 lines should match your logic, while the rest of the lines should not match.

Valid CCN Examples:
4253625879615786
4424424424442444

5122-2368-7954-3214

Invalid CCN Examples:

42536258796157867
4427777724442444
5122-2368-7954 - 3214
44244x4424442444

0525362587961578

Helpful Links

17 digits in card number

Consecutive digits are repeating 4 or more times

Spaces between the hyphen separator

Contains non-digit character

Doesn't start with 4, 50or 6

https://www.regular-expressions.info/alternation.html

https://www.regular-expressions.info/charclass.html

https://www.regular-expressions.info/backref.html

https://www.regular-expressions.info/backref2.html

https://www.regular-expressions.info/optional.html

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

https://www.regular-expressions.info/alternation.html
https://www.regular-expressions.info/charclass.html
https://www.regular-expressions.info/backref.html
https://www.regular-expressions.info/backref2.html
https://www.regular-expressions.info/optional.html

30

The Picky Painter

Hoors @ @ @ & &

Preamble

With all the weird stuff going on in the world of modern art, there is an artist who has a big art
collection consisting of paintings only in grayscale. People love it. You are her loyal apprentice
who has no clue about modern art, but helps her to find the right colors for her next
masterpiece. She likes grayish colors. Dark gray, light gray, gray gray, all shades of gray. Fifty.

However she already has decided to use a subset of them for her next painting and wants you to
select them from a long list of colors. Unfortunately, this list is rather ugly and looks like a
copy’n paste job gone wrong. There are some other colors and issues with incorrect formatting.

Description
The objective is fairly simple. Just match the gray colors.

How are gray colors defined?

Gray colors just have the same percentage of red, green and blue or alternatively cyan, magenta
and yellow coloring to it. But not 100% (white) or 0% (black). Additionally look for mistakes in
color notation and correct formatting. Your matching colors need to be captured in a named
capturing group called “match”.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com
Fewest chars.

Count of characters of the regex

Score-Self-Check

Fewest steps:

Good ~ 3500 steps; Great ~ 2000 steps; Amazing ~ 1100 steps
Fewest chars:

Good ~ 370 chars; Great ~ 280 chars; Amazing ~ 210 chars

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

Hints

31

Oftentimes it is useful to start from scratch. Save what you have and start anew.

Challenge Data (match, no match)

#111

#aaa

#eke

#111111

#6F6F6F

#efEfEF

rgb(2, 2,2)
rgb(15,15,15)
rgb(2.5,2.5,2.5)
rgb(1, 01, 000001)
rgb(20%, 20%,20%)
rgba(4,4,4,0.8)
rgba(4,4, 4,1)
rgba(3,3,3,0.12536)
rgba(10%,10%,10%,5%)
hsl(20,0%, 50%)
hsl(0, 10%, 100%)
hsl(0.5, 10.5%, 0%)
hsl(5, 5%, 0%)
hsla(20, 0%, 50%, 0.88)
hsla(0, 0%, 0%, 0.25)
#efl

#eEf

#11111e

#123456

rgb(2, 4,7)

rgb(10, 10,100)
rgb(1.5%, 1.5%, 1.8%)
rgba(1, 01,0010, 0.5)
hsl(20, 20%, 20%)
hls(0 1% 01%)
hsla(0, 10%, 50%, 0.5)
#11111

Jump to Glossary

#000000000
rbb(1, 1, 1)
rgb(10, 10, 10, 10)
rgb(257, 257, 257)
rgb(10%, 10, 10)
hsl (20,0%, 500)
argb(1.1.1)

Licensed using creative commons BY-NC-SA 4.0

32

Expected Output (21 matches)
The first 21 lines should match your logic, while the rest of the lines should not match.

Match each valid line using a named capture group called ‘match’.
(?<match>your regex logic)

Remember that your regex only has to work for the presented data. The challenge is not about
validating all the possible coloring formats or all the grayish-colors out there.

Helpful Links
https://en.wikipedia.org/wiki/Color_theory

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://en.wikipedia.org/wiki/Color_theory

33

Revelation

Hoors @ @ @ & &

Preamble

This challenge marks the last one of this collection. The author has never shown this challenge
to anyone before. This challenge demands you to use everything you have learned so far. It is
diabolically difficult. At least that is what the author hopes for.

The original idea for this challenge came from https://www.reddit.com/user/jordanreiter.

Description
Ever had issues with reformatting weird excel spreadsheets to get them into a working csv
format? No? Yes? Maybe?

Whatever your answer to this question might be, you just have to achieve one simple goal.

Get the presented challenge data into the form of the expected output.
Get the presented challenge data into the form of the expected output.
Get the presented challenge data into the form of the expected output.
Get the presented challenge data into the form of the expected output.

You need to use the built-in ‘substitution’ function of regex101.

Check the ‘Expected Output’ section for further clarification.

Rules
Default rules.

Winning Categories

Fewest steps.

Count of steps displayed on regex101.com

Fewest chars.

Count of characters of the regex + Count of characters of the substitution

Score-Self-Check

The author has achieved a solution with 2104 steps and 94 chars. Can you beat him?

Hints
Think you have solved it? Better check it vigorously before you call your solution done. There are
lots of small traps laid out in it to throw you off and ruin your day.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://www.reddit.com/user/jordanreiter

Challenge Data

This is a test

This is another test

This "big test" is a test

This "big test" is a "big test",yeah!
Almost "this entire" thing "is just a" quote
Matthew Banana-Horsey's friend Joseph
Matthew Banana-Horsey is a test
Matthew Banana-Horsey is—-a--test
This—is-test

This—-is-test field

Don't say anything,ok?

[can't think

This"is a" test

34

don't tell Matthew Banana-Horsey that | broke Brandon's toy horse

| can't see Matthew Banana-Horsey anywhere; can you?

Too long; didn't read

Matthew Banana-Horsey's car was stolen

Damien Chillet is a regex prodigy

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

35

Expected Output

This,is,a,test

This,is,another;test

This,big test,is,a test

This,big test,is,a,big test,yeah,!
Almost,this entire,thing,is just a,quote
Matthew,Banana-Horsey's,friend,Joseph
Matthew,Banana-Horsey,is,a,test
Matthew,Banana-Horsey,is,a,test
This,is,test

This,is-test,field
Don't,say,anything,ok,?

|,can't,think

This, is a ,test

don't,tell, Matthew,Banana-Horsey,that,|,broke,Brandon's,toy,horse

l,can't,see,Matthew,Banana-Horsey,anywhere,can,you,?

Too,long,didn't,read

Matthew,Banana-Horsey's,car,was,stolen

Damien,Chillet,is,a,regex,prodigy

Jump to Glossary

Licensed using creative commons BY-NC-SA 4.0

36

Additional Explanations

Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output. Get the presented challenge data into the form of the expected
output. Get the presented challenge data into the form of the expected output. Get the presented
challenge data into the form of the expected output. Get the presented challenge data into the
form of the expected output.

Helpful Links
None.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

37

Acknowledgements

Cary Petterborg

Cary Petterborg inspired me to learn regex when | joined the slack
community in 2017. He not only showed me how to improve my skills,
but also encouraged me to try out new approaches and look at
problems from different angles. Without him | would’'ve never
mastered regex.

Find Cary on LinkedIn: https://www.linkedin.com/in/carypetterborg/

Dal Jeanis

Dal Jeanis always believed in me and picked me up from the ground
every time | had tripped up. He saw the potential in me and was able to
convince me to keep fighting against all odds. His vast knowledge and
professional attitude were beneficial in my endeavour of becoming
who | am today.

Find Dal on LinkedIn: https://www.linkedin.com/in/daljeanis/

Callum Macrae

Callum Macrae’s website callumacrae.github.io/regex-tuesday/ gave me the idea to host
periodically occurring regex challenges in the Splunk> community. The challenges on his
website are the baseline for most challenges in this collection.

Check out Callum on: https://macr.ae/

The amazing regex web resources

Thanks go out to the amazing regex resources on the web. | linked to many of them in this
guide. Special thanks go out to Firas Dib, the creator of regex101.com, a site which made
hosting regex challenges manageable. Besides that, regex101.com is my go-to site whenever |
feel like doing regex.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

https://www.linkedin.com/in/splunk-trust-architect-remote/
https://www.linkedin.com/in/daljeanis/
http://callumacrae.github.io/regex-tuesday/
https://macr.ae/
https://regex101.com/
https://regex101.com/

38

The amazing folks from the unlimited_randomness channel

Thanks to all the amazing people from the ‘unlimited_randomness’ channel on the splunk user
group slack. Thank you for amazing conversations, funny stories and great entertainment
altogether. Without you all | wouldn't have made it so far and probably gone insane by now.

All the challenge participants

| want to thank each and everyone of you who participated in my regex challenges in the past.
Without your contribution it wouldn’t be possible to now publish this collection. Big thanks to
everyone for spending their valuable time. | hope you all had fun doing so.

The people proof-reading this document

Many thanks go out to the awesome folks that helped me finalize the contents of this
document. They spent their free time hunting through this document for spelling errors, issues
with grammar or factual mistakes.

Family and friends

Last but not least | want to thank my family and friends who supported me on countless
endeavours throughout my life and hopefully will continue doing so in the future.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

39

About the author

Matthias Kowalewski, the author of this document, is, despite popular
belief, not a real horse. He loves regex as much as being random.

If he is not actively hosting regex challenges in the Splunk> community
he works as a Splunk> Consultant with focus on IT-Security. He also
enjoys playing strategy games on his computer or hacking into

vulnerable machines that were set up in his private security lab.

Find Matthias on LinkedIn: www.linkedin.com/in/matthiaskowalewski
About creating this document

It was a lot of fun, and hard work, for me to put this collection of regex challenges together. This
is my first publication in the form of an e-book and | did learn a lot throughout the creation
process.

| am proud of how it all turned out in the end. | can only hope that you'll like it as much as | do
and that the newly gained knowledge about regular expressions will help you in your career.
Although, | already know that it will certainly be beneficial.

Contact me for feedback!

Wanna share your score?

Has this guide helped you to get better at regex?

Curious about how other people did in the challenges?

Wanna see my cool solution | use to validate IPv4 addresses?

Do you want to tell me about how you tortured your coworkers with the challenges?
Anything else regex related?

If yes, then please contact me at: horsefez@pm.me

Want me to solve your regex problems at work?
| am not going to. Sorry.

| am not paid to do your job.

GO AND LEARN REGEX. LOL.

Jump to Glossary Licensed using creative commons BY-NC-SA 4.0

http://www.linkedin.com/in/matthiaskowalewski
mailto:horsefez@pm.me

